
Automated Proctoring in Physical Exams by implementing
a Machine Learning Algorithm

Meeuwis, Wouter
1338390

Eindhoven University
of Technology

w.p.a.meeuwis@studen
t.tue.nl

Melaet, Robbie
1228955

Eindhoven University
of Technology

r.melaet1@student.tu
e.nl

Rutten, Niek
1240193

Eindhoven University
of Technology

n.j.e.rutten@student.t
ue.nl

Thijssen, Yorn
1342320

Eindhoven University
of Technology

y.j.thijssen@student.t
ue.nl

Tiemens, Ronald
1633775

Eindhoven University
of Technology

r.tiemens@student.tu
e.nl

ABSTRACT

In the past decades the occurrence of academic cheating has

increased enormously. Academic dishonesty decreases the
trustworthiness of academic diplomas, which makes it important
to tackle this problem. In this paper we propose a solution for
supporting invigilators with their task of supervising students
during physical exams. We propose an automated proctoring tool
by implementing a supervised machine learning algorithm with
intuitive textual and visual communication to the invigilator
(XAI). A test/train evaluation shows that the proposed system has
an accuracy of 94,4%. Therefore, this might serve as a realistic

and helpful solution for academic cheating in physical exam
situations.

Keywords

Academic Dishonesty; Supervised Learning Algorithm; Machine
Learning, Explainable AI (XAI); Supervising; Invigilators.

1. INTRODUCTION

1.1 The Problem
A university learning experience is not just about having a
qualification, it is also about the journey of the student, their
acquisition of skills, expertise and development of competencies
(Baijnath & Singh, 2019). However, the outcomes and expertise
of a student are most of the times measured by some form of

examination or assessment, this provides the assessors the
opportunity to attain a quantitative variable of the knowledge,
skills and competencies of the student (Baijnath & Singh, 2019).
During these assessment moments the pressure on the students is
rather high to achieve a good result, since the graduation criteria
are most of the times solely focused on results and learning
outcomes reflected through this examination.

Previous research by Baldwing et al. conducted a survey with
almost 2500 medical students in 31 different schools and showed
that 39 percent of the people has witnessed some type of cheating
during examination among classmates, in the first two years of

their medical education (Baldwin et al., 1996). This paper
concludes that this is an alarming amount of people and can
possibly undermine the trustworthiness of graduation certificates.
This conclusion is supported by the research performed by Mollie
K. Galloway (Galloway, 2012). In her research she gathered data
from 4316 high school students. She concludes that 93% (4013)
reported cheating at least once, and 26% (1122) of the students

reported that they have cheated 7 or more times during high
school.

Psychological research into academic dishonesty tries to identify
motivational factors that people must decide to cheat. However,
the results from these studies are widely ranging. Research by
Wang et al. identified three most common reasons as: time
restrictions for the preparation, people wanting to help each other
and the effect of ‘others cheat, so I should cheat’ (Wang et al.,

2015). Although the academic dishonesty rates are already high
during examination moments, the problem is getting even worse
due to the increase in smartphones in the world (Morgan &
Whitley, 2008). During physical examinations invigilators are
being used to keep an eye on the students and punish them when
they are cheating. This humanized way of cheating prevention
definitely has drawbacks, especially when looking at the high
occurrence of cheating in current day school. Therefore, in our

project we aim to use technology to support the academic integrity
during physical examination moments.

In this paper, we will propose a method to support exam

invigilators during physical exams. We designed a system that
implements a supervised learning algorithm that is able to inform
the supervisor when a student behaves abnormally and suspects
cheating. The algorithm makes this decision based on visual eye
recognition and tracking. A calculation is being made on how
often the user looks away from their test-material. This
information is communicated to the supervisor through an
intuitive digital user interface as an heatmap. This interface also

gives additional explanation on the decisions that are being made
by the system through textual and visual explanation.

The system proposed in this paper contributes design-relevant

knowledge for developing AI systems that are able to support
supervisors during physical exams. Through the implementation
of our system, we hope to decrease the occurrence of academic
dishonesty during physical tests.

1.2 Related work
Many studies have tried to tackle academic dishonesty by
developing proof-of-concepts for online test environments.
Especially during the COVID-19 pandemic the majority of
schools and universities had to switch to remote teaching and
therefore online tests were the main manner of examination
(Kamalov et al., 2021). Most of these studies developed software
that is able to track the computer usage of people during tests
(Cavalcanti et al., 2012; Diedenhofen & Musch, 2017; Tiong &
Lee, 2021). For example, Diedenhofen and Musch (2017)

developed a script that detects when participants abandon test

pages by switching to another window or browser tab. However,
now that the COVID-19 pandemic is coming to an end, online
examination is decreasing and shifting to on-campus examination
again. However, the area of technological proctoring in on-
campus examination remains underexplored.

Research by Bancud and Palconit focuses on camera detection of
human pose in relation to cheating in physical, on-campus

examination (Bancud & Palconit, 2021). Their system is being
trained by images which are labeled by proctors. The limitation of
this study is that these images need to be updated and evaluated
often in order to keep the system at high accuracy. The cheating
detection accuracy of the designed system might decrease when
students find ways to cheat without changing their posture, which
is the biggest drawback of their research. We hope to develop a
proof-of-concept that is able to support the cheating assessment of
a proctor in a smaller scale, and therefore decreasing the chance of

cheating the anti-cheating system.

Furthermore, Justin Thomas and Adam Jeffers developed a proof-

of-concept study on mobile eye tracking in order to support
academic integrity (Thomas & Jeffers, 2020). Using smart glasses
with an integrated camera they were able to identify what a person
was looking at during examination. They deployed the camera at
three volunteering students during an examination. After the
exam, the authors assessed the recordings on whether cheating has
occurred. Whereas this probably is a trustworthy method of
assessing whether students cheated, the process of watching all
videos is very time consuming if the student quantity increases.

Therefore, automated classification of the looking behavior is
desired. Besides, the authors identify that the glasses are
expensive and fragile (Thomas & Jeffers, 2020). Therefore, an
alternative, more stable and firm solution is desired.

2. Methods and materials

2.1 Explain your approach/specific methods

or theory.
The challenges that educational organizations face to prevent
cheating during physical exams on campus take place in a multi
stakeholder environment. Given that the number of invigilators
that can reasonably be employed and placed in exam halls is
limited, other options have to be considered to enable invigilators
to work more efficiently and effectively.

Automating the invigilation process can be considered with the
use of intelligent systems that watch, analyze and determine if
cheating behavior has taken place. However, the use of AI
empowered systems to take on the role of invigilators faces a
number of concerns and technical limitations. The desirability of

an automated making binding decisions and judgements on
students taking a test is questionable. A system might make
incorrect decisions, identifying regular behavior as suspicious or
cheating, with serious consequence for the students involved.
Furthermore, to make it possible for students to dispute a decision
made by an automated system the data that the system uses needs
to be logged somewhere to be reviewed. This possess issues of
privacy and ownership of personal data. Lastly the knowledge that

a system is constantly watching and making binding decisions
based on its observations can be very obtrusive.

The question that we then aim to answer is how can we create a

system that can help reduce cheating taking into account these
limitations. We aim to answer this question by designing a system
that takes into account the needs of the various people involved in
the on-campus examination. We note that the automated

classification of looking behavior is desired, that invigilators have
to be the main actors in decision making and that an AI
empowered agent for automation of tasks cannot store personal
information. The system formed in this design space is system
that classifies looking behavior and relays this information to

invigilators to notify them of places in the exam hall that deserve
extra attention.

We approach the design of these two elements, classifying and
relaying information, with the aforementioned limitations in mind.
For the design of the classifying element, we use a supervised
learning algorithm to create a model that can determine where a
student is looking by analyzing a video feed. Because collection
of personal data is not desired the algorithm does not learn during
the interaction when the model is deployed. The model as such
uses offline learning. For the design of the relaying of information
to the invigilator we employ explainable artificial intelligence

(XAI). XAI helps invigilators not only seeing the output of the
classification of suspicious behavior but provides the invigilator
with the reason why this classification was made. The use of the
algorithm and design of the system is further elaborated in this
paper.

2.2 Learning algorithm
The application of machine learning in our system is twofold.
Firstly, the system utilizes the OpenCV (Intel, 2021) and dLib
(King, 2021) libraries. In our case these libraries make use of a
Support Vector Machine Algorithm (a type of supervised learning
algorithm) to detect faces and 68 facial landmarks within those
faces in an image. The specific algorithm applied can be found in
the 2001 paper by Felzenszwalb et al. included in the references.

Using the camera feed of a webcam as an input, the libraries
output the coordinates of the 68 facial landmarks using code based
on code by Canu (2019). This data is used as an input of a second
supervised learning algorithm. For efficiency's sake we only use
the coordinates of the landmark associated with the tip of the nose
as input data, as this was enough to acquire accurate results. The
landmarks associated with the left and right sides of the jaw are
however used to rescale the landmark coordinates to one universal

size. Regardless of how large the face appears on the image; the
system resizes the landmark data such that the distance between
the leftmost and rightmost jaw points is fixed. The system also
repositions the landmarks so the rightmost jaw point is at the
window's origin (0,0) (figure 1). The x and y coordinates of the
nose landmark are then passed on to the second learning
algorithm.

Figure 1. facial landmarks before (left) and after resizing and repositioning

(right)

This algorithm is another supervised learning algorithm,
specifically a Random Forest Classification algorithm. This
algorithm was chosen since detecting the direction of the head is a

classification problem and the Random Forest Classifier came out
of our tests, based on code by Tsiakas (2021), as the most
accurate. The algorithm was trained with a dataset which was
generated using the first algorithm. A camera feed was provided
to the SVM algorithm as well as a label: either right, center or left
in numerical form (1, 2 and 3 respectively). A person facing the
webcam then looked in the direction of the currently selected label
and using a keypress the coordinates of the nose landmarks are
saved into a pandas dataframe. A bunch of datapoints are recorded

for all three directions, with the person facing the webcam slightly
varying their gaze for each datapoint. The dataframe is then
exported into a CSV which the final system uses to train its
Random Forest Classifier. This final system uses the real time
output of the first algorithm (which uses the real time camera feed
from the webcam) to estimate which direction a person is looking
at, thus providing our system with the data we desire (figure 2).

Figure 2. The three looking directions

3. Describe your design or solution

3.1 Design of the interaction

The system is developed to reduce the number of cheating
students during physical exams. To achieve this, a specific goal of
interaction had to be designed. This goal of interaction is to let the
system communicate when students act suspiciously. Even though
the system is developed to stop students from cheating, the
invigilators are the actual agents that interact with the system
during exams and thus are the agents where the system should

communicate with.

The communication between the system and the invigilators
happens through a UI (User Interface). The UI communicates

towards the invigilator when students are acting suspicious.
Students are classified as suspicious when their face is not facing
the test material. Several XAI (Explainable Artificial Intelligence)
features are used within this communication. Through both visual
and textual ways, the invigilator is shown who and specifically
why a specific student is classified as suspicious.

The exam room, where the physical exam takes place, is
visualized on the UI (figure 3). This means that all the desks in the
exam room are visible on the UI. At the beginning of the exam, all
the desks are colored white. The moment a student looks away
from the test material, the correlated desk of that student starts

coloring red (figure 4). The more a student looks away from the
test material, the redder the desk of that student becomes on the
UI. The invigilator can hoover over the desks with his cursor.

When this happens, the UI shows the number of times the student
of that specific desk looked away from the test material in a
textual way (figure 5).

Figure 3. Visualization of classroom on the User Interface (UI).

Figure 4. Color changes when student looks away.

Figure 5. Textual explanation after hoovering over a table (XAI).

The system is designed to warn the invigilator when a student acts
suspiciously. This warning should encourage the invigilator to
keep an eye on certain students and to address these students
when necessary. For ethical reasons, it was decided not to warn
the students directly and, in this way, make them the agents that

interact with the system. Communicating directly to students can
distract them while taking the exam. Besides that, it can increase
the feeling of nervousness. The system will make the work of
invigilators more efficient, and it will ensure students will cheat
less frequently during exams. For this reason, the system will
bring value to society.

The communication between the AI proctoring system and the UI
is done with OOCSI. OOCSI is a prototyping middleware that
enables communication between multiple systems.

3.2 Intelligent behavior and embodiment.

As was just described the embodied intelligence is placed at the

center of the invigilating routine. Physically this agent is present
in the form of a collection of cameras and the UI the invigilator
user to interact with it. Virtually it is present as a decision-making
model that is fed live video and transforms this input into an array
of classifications of looking behavior. These classifications are
made by determining the direction a person looks in a video feed.
The classification of direction is then used to classify behavior of
a person as either suspicious, not looking at their own desk, or

unsuspicious, looking at their desk, based on the amount of time a
person shows either of these behaviors. Bringing this last
classification from the system to the invigilator can be seen as the
main function the agent fulfills in the interaction. However, the
agent is acting throughout more of the interaction then the
fulfillment of its main function as the explanation through the UI
provides transparency by given the invigilator insight in the
elements the system bases its decision on, time and direction of
not looking at desks. This extra layer is paramount for the

functioning of the system as a whole. Invigilators can see with the
tool what areas of the exam hall deserve extra attention but can
dismiss advice on review of their environment.

The learning algorithms previously mentioned in this paper are
used to train our model to be able to show this intelligent behavior
with live input data. The designed model was thought to recognize
and map landmarks of faces using an existing model and then
thought to classify the direction of a person’s head. This training
is offline as storing the data of students during examinations is
deemed as undesirable making a designed model that learns
during the interaction unlikely. This could however be made

desirable if ethical concerns regarding privacy can be catered to.

The presentation of the classifications made by the deployed

model is designed with the main goal of the design in mind,
pointing the invigilator to where suspicious behavior may be
observed. The final translation of the model’s output, going from
classification of head direction to suspicious behavior based on
observed directions over time, makes for a usable system that
enables this. The translation of the classification gives other
desirable qualities as well such as the robustness of the system to
error resulting from a wrong classification and the differentiation

of areas where a lot of suspicious activity has happened, making
the system more useful.

3.3 Testing and analysis
To evaluate the system, we use a test dataset to calculate the
overall accuracy of the system as well as a confusion matrix
(figure 6). Using the train_test_split method from the SKlearn
library we split our original training dataset into a training dataset

(66% of the original dataset) and a test dataset (33% of the
original dataset). Each entry in the original training dataset is
randomly assigned to either the test or the training dataset. The
Random Forest Classifier is then trained using the new training
dataset. Subsequently it is tasked with classifying the entries in
the test dataset. The algorithm's classification of each entry in the
test dataset is then compared to that entry's original label to

calculate the accuracy of the algorithm. Using this method an
overall accuracy of 94.4% was calculated. Furthermore, the
confusion matrix tells us only one entry was incorrectly classified,
namely one image where the person was looking to the right was
classified as the person looking to the center. These results are

more than acceptable for our purposes, especially considering the
results are cumulative since it only matters whether students have
been looking in one direction for an extended period. Thus, a
single incorrect classification is less impactful as it will be
overruled by a majority of correct classifications.

Figure 6. Accuracy and Confusion Matrix

4. Discussion
The goal of the system, as described earlier, is to support
invigilators during physical exams by means of using a learning
algorithm and XAI. We do not know whether the system would
actually support invigilators. However, we have designed a

system that successfully detects whether a person is looking to the
right, center or left. Moreover, this has also been linked to a visual
interface that can support invigilators in doing their job.
Therefore, we can state that, within the given timeframe, we
successfully created a system that uses ML and XAI which in the
future can be used by invigilators to support them with
supervising during physical exams.

Our work does cover the biggest limitation of the work of Bancud
and Palconit (2021). Their solution was not able to recognize
whether students are cheating while not changing their body
posture. Since our ML algorithm uses facial landmarks, this is no

limitation anymore. Moreover, our algorithm does not need
images and does not need to be updated from time to time.

Furthermore, our work covers two major limitations of the work

of Justin Thomas and Adam Jeffers (2021). For their solution,
they had to watch the recorded footage of the students making the
exam, to determine whether a student had cheated or not. Our
proposed solution automatically evaluates the live feed of the
student. So, it is not needed to watch footage after the exam,
which thus saves time. Besides, in our solution, no video is
recorded. Moreover, our proposed solution does not require
students to wear a wearable.

There are however several limitations to the current design.
Firstly, because of the time constraint, the learning algorithm was
trained to classify students only in three classes. For a real exam

setting, this would not be enough to determine whether a student
is cheating. However, it shows that a machine learning algorithm
can be made to perform this task. Secondly, no physical prototype
was made. It has yet to be determined how such an exam table set-
up including a camera would look like. Thirdly, no tests were
performed in a real exam room setting. Therefore, we cannot state
whether a camera placed on an exam table has influence on the
students and thus their exam results. Future work should

therefore, amongst other things, focus on the influence of the
presence of a camera on an exam table.

Apart from investigating the influence of the presence of a

camera, there is more future work yet to be done before such a

system could be implemented. First of all, a future system should
categorize more classes than the current three. This would be
needed to categorize students more specifically whether they are
cheating or not. A student could also look up and to the left, and
thus not cheating, while in the current system the student would

be classified as prone to cheating. To build on that, an invigilator
must be able to easily indicate on specific tables which classes are
said to be prone to cheating. With this we mean that an invigilator
must be able to tell the system that for instance for a specific row
of tables, looking to the right is not cheating, because a window is
located there. In this case the system would not color these tables
if these students are harmlessly looking outside the window. To
create this feature for invigilators, future work should also

consider elaborating on the (design of the) UI. It should be made
easy and intuitive for invigilators to interact with the UI.

5. Conclusions
This paper proposes a solution that supports invigilators in their
work by using ML do detect whether a student is prone to
cheating, and by making use of XAI to make it understandable for
the invigilator. A machine learning algorithm was made that
detects whether a student is looking to the left, center or right, and
classifies this into the corresponding classes. In addition, a UI was
made that supports the invigilator by using Explainable AI in the

form of color coding and visual text, to make the classification of
a student understandable. Within the given timeframe, we can
state that we successfully created a system with respect to
embodying intelligent behavior in social context. Specifically, our
work shows to have potential in the educational context. Future
work should elaborate on the working of the system in order to be
determined whether it actually supports invigilators in their work.

6. REFERENCES
Baijnath, N., & Singh, D. (2019). Examination cheating: Risks to

the quality and integrity of higher education. South African
Journal of Science, 115. https://doi.org/10.17159/sajs.2019/6281

Baldwin, D. C. J., Daugherty, S. R., Rowley, B. D., & Schwarz,

M. D. (1996). Cheating in medical school: A survey of second-
year students at 31 schools. Academic Medicine, 71(3), 267–273.

Bancud, G. E., & Palconit, E. (2021). Human pose estimation

using machine learning for cheating detection.
https://doi.org/10.13140/RG.2.2.12686.28481

Canu, S. (2019). face-landmarks-detection-opencv-with-
python.[Python]. https://pysource.com/2019/03/12/face-
landmarks-detection-opencv-with-python/.

Cavalcanti, E. R., Pires, C. E., Cavalcanti, E. P., & Pires, V. F.
(2012). Detection and Evaluation of Cheating on College Exams
using Supervised Classification. Informatics in Education, 11(2),
169–190. https://doi.org/10.15388/infedu.2012.09

Diedenhofen, B., & Musch, J. (2017). PageFocus: Using paradata
to detect and prevent cheating on online achievement tests.
Behavior Research Methods, 49(4), 1444–1459. Scopus.
https://doi.org/10.3758/s13428-016-0800-7

Felzenszwalb, P. F. Girshick, R. B. McAllester, D. and Ramanan
D., (2010, Sep) "Object Detection with Discriminatively Trained
Part-Based Models," in IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, no. 9, pp. 1627-1645, doi:
10.1109/TPAMI.2009.167.

https://doi.org/10.15388/infedu.2012.09

Galloway, M. K. (2012). Cheating in Advantaged High Schools:
Prevalence, Justifications, and Possibilities for Change. Ethics &
Behavior, 22(5), 378–399.
https://doi.org/10.1080/10508422.2012.679143

Intel. (2021). OpenCV library (Version 4.5.4). [library]
https://opencv.org/releases/

Kamalov, F., Sulieman, H., & Santandreu Calonge, D. (2021).
Machine learning based approach to exam cheating detection.
PLoS ONE, 16(8), e0254340.
https://doi.org/10.1371/journal.pone.0254340

King, D.E. (2021). Dlib c++ library (Version 19.22). [library].
http://dlib.net/

Tsiakas, K. (2021). supervised-learning-1b. [Python].
https://canvas.tue.nl/files/3409965/download?download_frd=1.

Morgan, M., & Whitley, H. (2008, April 7). Academic dishonesty
among pharmacy students: Does technology have a role?

Thomas, J., & Jeffers, A. (2020). Mobile eye tracking and
academic integrity: A proof-of-concept study in the United Arab
Emirates. Accountability in Research, 27(5), 247–255.
https://doi.org/10.1080/08989621.2019.1646645

Tiong, L. C. O., & Lee, H. J. (2021). E-cheating Prevention
Measures: Detection of Cheating at Online Examinations Using
Deep Learning Approach -- A Case Study. ArXiv:2101.09841
[Cs]. http://arxiv.org/abs/2101.09841

7. Appendix
A.1 Python code for test data generation

'''

Code to generate a test dataset for

Written by Niek Rutten for the Embodying Intelligen Behavior in

Social Contexts course

2020 TU/e

Based on:

Canu, S. (2019). face-landmarks-detection-opencv-with-
python.[Python]. https://pysource.com/2019/03/12/face-
landmarks-detection-opencv-with-python/.

and

Tsiakas, K. (2021). supervised-learning-1b. [Python].
https://canvas.tue.nl/files/3409965/download?download_frd=1.

'''

#code is largely the same as realtime predictions, differences are
commented

import cv2

import numpy as np

import dlib

import pandas as pd

cap = cv2.VideoCapture(0)

detector = dlib.get_frontal_face_detector()

predictor =
dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

dataCount=0

df = pd.DataFrame(columns=('noseX', 'noseY', 'direction'))

direction = 2

while True:

 _, frame = cap.read()

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 faces = detector(gray)

 for face in faces:

 x1 = face.left()

 y1 = face.top()

 x2 = face.right()

 y2 = face.bottom()

 #cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 3)

 landmarks = predictor(gray, face)

 x=[0] * 68

 y=[0] * 68

 for n in range(0, 68):

 multiplier=170/(landmarks.part(16).x-landmarks.part(0).x)

 x[n] = (int((landmarks.part(n).x -

landmarks.part(0).x)*multiplier))

 y[n] = (int((landmarks.part(n).y -
landmarks.part(19).y)*multiplier))

 cv2.circle(frame, (x[n], y[n]), 4, (255, 0, 0), -1)

 cv2.imshow("Frame", frame)

 key = cv2.waitKey(1)

 if key == 27:

 break

 if key == ord('s'): #save the current datapoint in a dataframe

 new_entry = {'noseX':x[33], 'noseY':y[33],
'direction':direction}

 df.loc[len(df)] = new_entry

 print(df)

 #export dataframe to CSV

 if key == ord('e'):

https://doi.org/10.1080/10508422.2012.679143
https://opencv.org/releases/
https://doi.org/10.1371/journal.pone.0254340
http://dlib.net/
https://canvas.tue.nl/files/3409965/download?download_frd=1
http://arxiv.org/abs/2101.09841

df.to_csv(r'C:\Users\20174718\Documents\ID\Year5\Q1\Embodyi
ng intelligent behavior in social context\test data.csv', index =
False)

 print("exported!")

 #set which gaze direction is recorded

 if key == ord('r'):

 direction=1

 print("direction set to right")

 if key == ord('l'):

 direction=3

 print("direction set to left")

 if key == ord('c'):

 direction=2

 print("direction set to center")

cap.release()

cv2.destroyAllWindows()

A.2 Python code for real time predictions

'''

Code to predict gaze direction using machine learning.

Written by Niek Rutten for the Embodying Intelligen Behavior in
Social Contexts course

2020 TU/e

Based on:

Canu, S. (2019). face-landmarks-detection-opencv-with-
python.[Python]. https://pysource.com/2019/03/12/face-
landmarks-detection-opencv-with-python/.

and

Tsiakas, K. (2021). supervised-learning-1b. [Python].

https://canvas.tue.nl/files/3409965/download?download_frd=1.

'''

import cv2

import numpy as np

import dlib

import pandas as pd

from oocsi import OOCSI

from sklearn.ensemble import RandomForestClassifier

cap = cv2.VideoCapture(0) #video feed from webcam

detector = dlib.get_frontal_face_detector()

predictor =
dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

sessions = pd.read_csv('test data.csv'); #load in the training data

create training dataset - input and output -- create classes

X = sessions[["noseX","noseY"]].to_numpy(); # position of the
nose

Y = sessions[["direction"]].to_numpy(); #looking direction

#training the algorithm

rf = RandomForestClassifier(n_estimators=150, criterion =
'entropy')

rf.fit(X, Y.ravel())

variables for the text on screen

font = cv2.FONT_HERSHEY_DUPLEX

org = (200, 450)

fontScale = 2.5

color = (255, 0, 0)

thickness = 5

connect to OOCSI running on the local machine ('localhost'), for
connecting to processing

oocsi = OOCSI()

while True: #keep looping

 _, frame = cap.read()

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#turn
the vidoe feed into grayscale

 faces = detector(gray) #detect faces in the image

 for face in faces:#loop trough all faces

 landmarks = predictor(gray, face) #detect landmarks for the
face

 x=[0] * 68 #create variables for x and y to record landmark
data

 y=[0] * 68

 for n in range(0, 68):

 multiplier=170/(landmarks.part(16).x-
landmarks.part(0).x)#calculate the distance between left jaw and
right jaw and calculate how much the face needs to be resized

 x[n] = (int((landmarks.part(n).x -
landmarks.part(0).x)*multiplier))#record x and y data of
landmarks

 y[n] = (int((landmarks.part(n).y -
landmarks.part(19).y)*multiplier))

 cv2.circle(frame, (x[n], y[n]), 4, (255, 0, 0), -1)

 X_test=np.array([x[33], y[33]])#create array with data that is
used to predict gaze direction

 rf_prediction = rf.predict(X_test.reshape(1,-1))#run

prediction

 if rf_prediction[0]==1: #put text on screen with the predicted
direction and send data to processing

 text='right';

 oocsi.send('colorChannel', {'direction': 1})

 if rf_prediction[0]==2:

 text='center';

 oocsi.send('colorChannel', {'direction': 2})

 if rf_prediction[0]==3:

 text='left';

 oocsi.send('colorChannel', {'direction': 3})

 cv2.putText(frame, text, org, font,

 fontScale, color, thickness, cv2.LINE_AA)

 #print(rf_prediction)

 cv2.imshow("Frame", frame)

 key = cv2.waitKey(1)#quit program when esc is pressed

 if key == 27:

 break

cap.release()

cv2.destroyAllWindows()

A.3 Python code for evaluation algorithm

'''

Code to evaluate the accuracy of a random forest classifier.

Written by Niek Rutten for the Embodying Intelligen Behavior in
Social Contexts course

2020 TU/e

Based on:

Tsiakas, K. (2021). supervised-learning-1b. [Python].
https://canvas.tue.nl/files/3409965/download?download_frd=1.

'''

from sklearn.neural_network import MLPClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix

from sklearn.ensemble import RandomForestClassifier

from sklearn import tree, metrics

from sklearn.svm import SVC

import pandas as pd;

sessions = pd.read_csv('test data.csv'); #read the traning data

create training dataset - input and output

X = sessions[["noseX","noseY"]].to_numpy();

Y = sessions[["direction"]].to_numpy();

create training/test dataset

X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.33, random_state=2);

#train algorithm

rf = RandomForestClassifier(n_estimators=150, criterion =
'entropy')

rf.fit(X_train, Y_train)

#run algorithm for test dataset

rf_prediction = rf.predict(X_test)

#print the accuracy

print("RF Accuracy:",metrics.accuracy_score(Y_test,
rf_prediction))

print(confusion_matrix(Y_test, rf_prediction));

A.4 Processing code

//https://github.com/iddi/oocsi-processing

import nl.tue.id.oocsi.*;

int color1 = 255;

int color2 = 255;

int increase = 2;

String facingDirection = "right";

boolean suspicious = false;

void setup() {

 size(1000, 600);

 background(#AACDDE);

 textSize(20);

 // connect to OOCSI server running on the same machine
(localhost)

 // with "receiverName" to be my channel others can send data to

 // (for more information how to run an OOCSI server refer to:
https://iddi.github.io/oocsi/)

 OOCSI oocsi = new OOCSI(this, "EIBISC_GROUP2",
"localhost");

 // connect to OOCSI server running at the adress
oocsi.example.net:

 //OOCSI oocsi = new OOCSI(this, "unique_name",
"oocsi.example.net");

 // subscribe to channel "testchannel"

 // either the channel name is used for looking for a handler
method...

 oocsi.subscribe("colorChannel");

 // ... or the handler method name can be given explicitly

 // oocsi.subscribe("testchannel", "testchannel");

}

void draw() {

 background(#AACDDE);

 //tafel links

 fill(color1, color2, color2);

 rect(150, 200, 300, 200, 28);

 arc(300, 400, 170, 100, 0, PI, CHORD);

 //tafel rechts

 fill(color1);

 rect(550, 200, 300, 200, 28);

 arc(700, 400, 170, 100, 0, PI, CHORD);

 if (mouseX > 150 && mouseX<450 && mouseY > 200 &&
mouseY <400 && suspicious==true) {

 text("Student X is looking to their " + facingDirection + " a lot.

You should check this student.", 162, 120);

 } else {

 text(" ", 40, 120);

 }

}

void colorChannel(OOCSIEvent event) {

 int direction = event.getInt("direction", 0);

 if(direction==1){

 color2-=increase;

 if(color2<0){color2=0;}

 facingDirection="right";

 suspicious=true;

 }

 if(direction==3){

 color2-=increase;

 if(color2<0){color2=0;}

 suspicious=true;

 facingDirection="left";

 }

 if(direction==2){

 color2+=increase;

 if(color2>255){color2=255;}

 suspicious=false;

 }

 //println(direction);

 //println(color2);

}

A.5 Link to video

https://youtu.be/LoICO9QNcvY

