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ABSTRACT 

In the past decades the occurrence of academic cheating has 

increased enormously. Academic dishonesty decreases the 
trustworthiness of academic diplomas, which makes it important 
to tackle this problem. In this paper we propose a solution for 
supporting invigilators with their task of supervising students 
during physical exams. We propose an automated proctoring tool 
by implementing a supervised machine learning algorithm with 
intuitive textual and visual communication to the invigilator 
(XAI). A test/train evaluation shows that the proposed system has 
an accuracy of 94,4%. Therefore, this might serve as a realistic 

and helpful solution for academic cheating in physical exam 
situations. 
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1. INTRODUCTION 

1.1 The Problem 
A university learning experience is not just about having a 
qualification, it is also about the journey of the student, their 
acquisition of skills, expertise and development of competencies 
(Baijnath & Singh, 2019). However, the outcomes and expertise 
of a student are most of the times measured by some form of 

examination or assessment, this provides the assessors the 
opportunity to attain a quantitative variable of the knowledge, 
skills and competencies of the student (Baijnath & Singh, 2019). 
During these assessment moments the pressure on the students is 
rather high to achieve a good result, since the graduation criteria 
are most of the times solely focused on results and learning 
outcomes reflected through this examination. 

Previous research by Baldwing et al. conducted a survey with 
almost 2500 medical students in 31 different schools and showed 
that 39 percent of the people has witnessed some type of cheating 
during examination among classmates, in the first two years of 

their medical education (Baldwin et al., 1996). This paper 
concludes that this is an alarming amount of people and can 
possibly undermine the trustworthiness of graduation certificates. 
This conclusion is supported by the research performed by Mollie 
K. Galloway (Galloway, 2012). In her research she gathered data 
from 4316 high school students. She concludes that 93% (4013) 
reported cheating at least once, and 26% (1122) of the students 

reported that they have cheated 7 or more times during high 
school. 

Psychological research into academic dishonesty tries to identify 
motivational factors that people must decide to cheat. However, 
the results from these studies are widely ranging. Research by 
Wang et al. identified three most common reasons as: time 
restrictions for the preparation, people wanting to help each other 
and the effect of ‘others cheat, so I should cheat’ (Wang et al., 

2015). Although the academic dishonesty rates are already high 
during examination moments, the problem is getting even worse 
due to the increase in smartphones in the world (Morgan & 
Whitley, 2008). During physical examinations invigilators are 
being used to keep an eye on the students and punish them when 
they are cheating. This humanized way of cheating prevention 
definitely has drawbacks, especially when looking at the high 
occurrence of cheating in current day school. Therefore, in our 

project we aim to use technology to support the academic integrity 
during physical examination moments. 

In this paper, we will propose a method to support exam 

invigilators during physical exams. We designed a system that 
implements a supervised learning algorithm that is able to inform 
the supervisor when a student behaves abnormally and suspects 
cheating. The algorithm makes this decision based on visual eye 
recognition and tracking. A calculation is being made on how 
often the user looks away from their test-material. This 
information is communicated to the supervisor through an 
intuitive digital user interface as an heatmap. This interface also 

gives additional explanation on the decisions that are being made 
by the system through textual and visual explanation.  

The system proposed in this paper contributes design-relevant 

knowledge for developing AI systems that are able to support 
supervisors during physical exams. Through the implementation 
of our system, we hope to decrease the occurrence of academic 
dishonesty during physical tests.   

1.2 Related work 
Many studies have tried to tackle academic dishonesty by 
developing proof-of-concepts for online test environments. 
Especially during the COVID-19 pandemic the majority of 
schools and universities had to switch to remote teaching and 
therefore online tests were the main manner of examination 
(Kamalov et al., 2021). Most of these studies developed software 
that is able to track the computer usage of people during tests 
(Cavalcanti et al., 2012; Diedenhofen & Musch, 2017; Tiong & 
Lee, 2021). For example, Diedenhofen and Musch (2017) 

developed a script that detects when participants abandon test 



pages by switching to another window or browser tab. However, 
now that the COVID-19 pandemic is coming to an end, online 
examination is decreasing and shifting to on-campus examination 
again. However, the area of technological proctoring in on-
campus examination remains underexplored. 

Research by Bancud and Palconit focuses on camera detection of 
human pose in relation to cheating in physical, on-campus 

examination (Bancud & Palconit, 2021). Their system is being 
trained by images which are labeled by proctors. The limitation of 
this study is that these images need to be updated and evaluated 
often in order to keep the system at high accuracy. The cheating 
detection accuracy of the designed system might decrease when 
students find ways to cheat without changing their posture, which 
is the biggest drawback of their research. We hope to develop a 
proof-of-concept that is able to support the cheating assessment of 
a proctor in a smaller scale, and therefore decreasing the chance of 

cheating the anti-cheating system. 

Furthermore, Justin Thomas and Adam Jeffers developed a proof-

of-concept study on mobile eye tracking in order to support 
academic integrity (Thomas & Jeffers, 2020). Using smart glasses 
with an integrated camera they were able to identify what a person 
was looking at during examination. They deployed the camera at 
three volunteering students during an examination. After the 
exam, the authors assessed the recordings on whether cheating has 
occurred. Whereas this probably is a trustworthy method of 
assessing whether students cheated, the process of watching all 
videos is very time consuming if the student quantity increases. 

Therefore, automated classification of the looking behavior is 
desired. Besides, the authors identify that the glasses are 
expensive and fragile (Thomas & Jeffers, 2020). Therefore, an 
alternative, more stable and firm solution is desired.  

2. Methods and materials 

2.1 Explain your approach/specific methods 

or theory. 
The challenges that educational organizations face to prevent 
cheating during physical exams on campus take place in a multi 
stakeholder environment. Given that the number of invigilators 
that can reasonably be employed and placed in exam halls is 
limited, other options have to be considered to enable invigilators 
to work more efficiently and effectively.  

Automating the invigilation process can be considered with the 
use of intelligent systems that watch, analyze and determine if 
cheating behavior has taken place. However, the use of AI 
empowered systems to take on the role of invigilators faces a 
number of concerns and technical limitations. The desirability of 

an automated making binding decisions and judgements on 
students taking a test is questionable. A system might make 
incorrect decisions, identifying regular behavior as suspicious or 
cheating, with serious consequence for the students involved. 
Furthermore, to make it possible for students to dispute a decision 
made by an automated system the data that the system uses needs 
to be logged somewhere to be reviewed. This possess issues of 
privacy and ownership of personal data. Lastly the knowledge that 

a system is constantly watching and making binding decisions 
based on its observations can be very obtrusive. 

The question that we then aim to answer is how can we create a 

system that can help reduce cheating taking into account these 
limitations. We aim to answer this question by designing a system 
that takes into account the needs of the various people involved in 
the on-campus examination. We note that the automated 

classification of looking behavior is desired, that invigilators have 
to be the main actors in decision making and that an AI 
empowered agent for automation of tasks cannot store personal 
information. The system formed in this design space is system 
that classifies looking behavior and relays this information to 

invigilators to notify them of places in the exam hall that deserve 
extra attention.  

We approach the design of these two elements, classifying and 
relaying information, with the aforementioned limitations in mind. 
For the design of the classifying element, we use a supervised 
learning algorithm to create a model that can determine where a 
student is looking by analyzing a video feed. Because collection 
of personal data is not desired the algorithm does not learn during 
the interaction when the model is deployed. The model as such 
uses offline learning. For the design of the relaying of information 
to the invigilator we employ explainable artificial intelligence 

(XAI). XAI helps invigilators not only seeing the output of the 
classification of suspicious behavior but provides the invigilator 
with the reason why this classification was made. The use of the 
algorithm and design of the system is further elaborated in this 
paper. 

2.2 Learning algorithm 
The application of machine learning in our system is twofold. 
Firstly, the system utilizes the OpenCV (Intel, 2021) and dLib 
(King, 2021) libraries. In our case these libraries make use of a 
Support Vector Machine Algorithm (a type of supervised learning 
algorithm) to detect faces and 68 facial landmarks within those 
faces in an image. The specific algorithm applied can be found in 
the 2001 paper by Felzenszwalb et al. included in the references. 

Using the camera feed of a webcam as an input, the libraries 
output the coordinates of the 68 facial landmarks using code based 
on code by Canu (2019).  This data is used as an input of a second 
supervised learning algorithm. For efficiency's sake we only use 
the coordinates of the landmark associated with the tip of the nose 
as input data, as this was enough to acquire accurate results. The 
landmarks associated with the left and right sides of the jaw are 
however used to rescale the landmark coordinates to one universal 

size. Regardless of how large the face appears on the image; the 
system resizes the landmark data such that the distance between 
the leftmost and rightmost jaw points is fixed. The system also 
repositions the landmarks so the rightmost jaw point is at the 
window's origin (0,0) (figure 1). The x and y coordinates of the 
nose landmark are then passed on to the second learning 
algorithm. 



 

Figure 1. facial landmarks before (left) and after resizing and repositioning 

(right) 

 

This algorithm is another supervised learning algorithm, 
specifically a Random Forest Classification algorithm. This 
algorithm was chosen since detecting the direction of the head is a 

classification problem and the Random Forest Classifier came out 
of our tests, based on code by Tsiakas (2021), as the most 
accurate. The algorithm was trained with a dataset which was 
generated using the first algorithm. A camera feed was provided 
to the SVM algorithm as well as a label: either right, center or left 
in numerical form (1, 2 and 3 respectively). A person facing the 
webcam then looked in the direction of the currently selected label 
and using a keypress the coordinates of the nose landmarks are 
saved into a pandas dataframe. A bunch of datapoints are recorded 

for all three directions, with the person facing the webcam slightly 
varying their gaze for each datapoint. The dataframe is then 
exported into a CSV which the final system uses to train its 
Random Forest Classifier. This final system uses the real time 
output of the first algorithm (which uses the real time camera feed 
from the webcam) to estimate which direction a person is looking 
at, thus providing our system with the data we desire (figure 2). 

 

Figure 2. The three looking directions  

3. Describe your design or solution  

3.1 Design of the interaction  
 

The system is developed to reduce the number of cheating 
students during physical exams. To achieve this, a specific goal of 
interaction had to be designed. This goal of interaction is to let the 
system communicate when students act suspiciously. Even though 
the system is developed to stop students from cheating, the 
invigilators are the actual agents that interact with the system 
during exams and thus are the agents where the system should 

communicate with. 

The communication between the system and the invigilators 
happens through a UI (User Interface). The UI communicates 

towards the invigilator when students are acting suspicious. 
Students are classified as suspicious when their face is not facing 
the test material. Several XAI (Explainable Artificial Intelligence) 
features are used within this communication. Through both visual 
and textual ways, the invigilator is shown who and specifically 
why a specific student is classified as suspicious. 

The exam room, where the physical exam takes place, is 
visualized on the UI (figure 3). This means that all the desks in the 
exam room are visible on the UI. At the beginning of the exam, all 
the desks are colored white. The moment a student looks away 
from the test material, the correlated desk of that student starts 

coloring red (figure 4). The more a student looks away from the 
test material, the redder the desk of that student becomes on the 
UI. The invigilator can hoover over the desks with his cursor. 



When this happens, the UI shows the number of times the student 
of that specific desk looked away from the test material in a 
textual way (figure 5).  

           

Figure 3. Visualization of classroom on the User Interface (UI). 

             

           

Figure 4. Color changes when student looks     away. 

        

 

Figure 5. Textual explanation after hoovering over a table (XAI). 

 

The system is designed to warn the invigilator when a student acts 
suspiciously. This warning should encourage the invigilator to 
keep an eye on certain students and to address these students 
when necessary. For ethical reasons, it was decided not to warn 
the students directly and, in this way, make them the agents that 

interact with the system. Communicating directly to students can 
distract them while taking the exam. Besides that, it can increase 
the feeling of nervousness. The system will make the work of 
invigilators more efficient, and it will ensure students will cheat 
less frequently during exams. For this reason, the system will 
bring value to society. 

The communication between the AI proctoring system and the UI 
is done with OOCSI. OOCSI is a prototyping middleware that 
enables communication between multiple systems. 

 

3.2 Intelligent behavior and embodiment.  
 

As was just described the embodied intelligence is placed at the 

center of the invigilating routine. Physically this agent is present 
in the form of a collection of cameras and the UI the invigilator 
user to interact with it. Virtually it is present as a decision-making 
model that is fed live video and transforms this input into an array 
of classifications of looking behavior. These classifications are 
made by determining the direction a person looks in a video feed. 
The classification of direction is then used to classify behavior of 
a person as either suspicious, not looking at their own desk, or 

unsuspicious, looking at their desk, based on the amount of time a 
person shows either of these behaviors. Bringing this last 
classification from the system to the invigilator can be seen as the 
main function the agent fulfills in the interaction. However, the 
agent is acting throughout more of the interaction then the 
fulfillment of its main function as the explanation through the UI 
provides transparency by given the invigilator insight in the 
elements the system bases its decision on, time and direction of 
not looking at desks. This extra layer is paramount for the 

functioning of the system as a whole. Invigilators can see with the 
tool what areas of the exam hall deserve extra attention but can 
dismiss advice on review of their environment. 

The learning algorithms previously mentioned in this paper are 
used to train our model to be able to show this intelligent behavior 
with live input data. The designed model was thought to recognize 
and map landmarks of faces using an existing model and then 
thought to classify the direction of a person’s head. This training 
is offline as storing the data of students during examinations is 
deemed as undesirable making a designed model that learns 
during the interaction unlikely. This could however be made 

desirable if ethical concerns regarding privacy can be catered to.  

The presentation of the classifications made by the deployed 

model is designed with the main goal of the design in mind, 
pointing the invigilator to where suspicious behavior may be 
observed. The final translation of the model’s output, going from 
classification of head direction to suspicious behavior based on 
observed directions over time, makes for a usable system that 
enables this. The translation of the classification gives other 
desirable qualities as well such as the robustness of the system to 
error resulting from a wrong classification and the differentiation 

of areas where a lot of suspicious activity has happened, making 
the system more useful.  

 

3.3 Testing and analysis 
To evaluate the system, we use a test dataset to calculate the 
overall accuracy of the system as well as a confusion matrix 
(figure 6). Using the train_test_split method from the SKlearn 
library we split our original training dataset into a training dataset 

(66% of the original dataset) and a test dataset (33% of the 
original dataset). Each entry in the original training dataset is 
randomly assigned to either the test or the training dataset. The 
Random Forest Classifier is then trained using the new training 
dataset. Subsequently it is tasked with classifying the entries in 
the test dataset. The algorithm's classification of each entry in the 
test dataset is then compared to that entry's original label to 



calculate the accuracy of the algorithm. Using this method an 
overall accuracy of 94.4% was calculated. Furthermore, the 
confusion matrix tells us only one entry was incorrectly classified, 
namely one image where the person was looking to the right was 
classified as the person looking to the center. These results are 

more than acceptable for our purposes, especially considering the 
results are cumulative since it only matters whether students have 
been looking in one direction for an extended period. Thus, a 
single incorrect classification is less impactful as it will be 
overruled by a majority of correct classifications. 

 

 

Figure 6. Accuracy and Confusion Matrix 

4. Discussion 
The goal of the system, as described earlier, is to support 
invigilators during physical exams by means of using a learning 
algorithm and XAI. We do not know whether the system would 
actually support invigilators. However, we have designed a 

system that successfully detects whether a person is looking to the 
right, center or left. Moreover, this has also been linked to a visual 
interface that can support invigilators in doing their job. 
Therefore, we can state that, within the given timeframe, we 
successfully created a system that uses ML and XAI which in the 
future can be used by invigilators to support them with 
supervising during physical exams.  

Our work does cover the biggest limitation of the work of Bancud 
and Palconit (2021). Their solution was not able to recognize 
whether students are cheating while not changing their body 
posture. Since our ML algorithm uses facial landmarks, this is no 

limitation anymore. Moreover, our algorithm does not need 
images and does not need to be updated from time to time.  

Furthermore, our work covers two major limitations of the work 

of Justin Thomas and Adam Jeffers (2021). For their solution, 
they had to watch the recorded footage of the students making the 
exam, to determine whether a student had cheated or not. Our 
proposed solution automatically evaluates the live feed of the 
student. So, it is not needed to watch footage after the exam, 
which thus saves time. Besides, in our solution, no video is 
recorded. Moreover, our proposed solution does not require 
students to wear a wearable. 

There are however several limitations to the current design. 
Firstly, because of the time constraint, the learning algorithm was 
trained to classify students only in three classes. For a real exam 

setting, this would not be enough to determine whether a student 
is cheating. However, it shows that a machine learning algorithm 
can be made to perform this task. Secondly, no physical prototype 
was made. It has yet to be determined how such an exam table set-
up including a camera would look like. Thirdly, no tests were 
performed in a real exam room setting. Therefore, we cannot state 
whether a camera placed on an exam table has influence on the 
students and thus their exam results. Future work should 

therefore, amongst other things, focus on the influence of the 
presence of a camera on an exam table.  

Apart from investigating the influence of the presence of a 

camera, there is more future work yet to be done before such a 

system could be implemented. First of all, a future system should 
categorize more classes than the current three. This would be 
needed to categorize students more specifically whether they are 
cheating or not. A student could also look up and to the left, and 
thus not cheating, while in the current system the student would 

be classified as prone to cheating. To build on that, an invigilator 
must be able to easily indicate on specific tables which classes are 
said to be prone to cheating. With this we mean that an invigilator 
must be able to tell the system that for instance for a specific row 
of tables, looking to the right is not cheating, because a window is 
located there. In this case the system would not color these tables 
if these students are harmlessly looking outside the window. To 
create this feature for invigilators, future work should also 

consider elaborating on the (design of the ) UI. It should be made 
easy and intuitive for invigilators to interact with the UI. 

 

5. Conclusions 
This paper proposes a solution that supports invigilators in their 
work by using ML do detect whether a student is prone to 
cheating, and by making use of XAI to make it understandable for 
the invigilator. A machine learning algorithm was made that 
detects whether a student is looking to the left, center or right, and 
classifies this into the corresponding classes. In addition, a UI was 
made that supports the invigilator by using Explainable AI in the 

form of color coding and visual text, to make the classification of 
a student understandable. Within the given timeframe, we can 
state that we successfully created a system with respect to 
embodying intelligent behavior in social context. Specifically, our 
work shows to have potential in the educational context. Future 
work should elaborate on the working of the system in order to be 
determined whether it actually supports invigilators in their work.  
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7. Appendix  
A.1 Python code for test data generation 

''' 

Code to generate a test dataset for 

Written by Niek Rutten for the Embodying Intelligen Behavior in 

Social Contexts course 

2020 TU/e 

  

Based on: 

Canu, S. (2019). face-landmarks-detection-opencv-with-
python.[Python]. https://pysource.com/2019/03/12/face-
landmarks-detection-opencv-with-python/. 

and 

Tsiakas, K. (2021). supervised-learning-1b. [Python]. 
https://canvas.tue.nl/files/3409965/download?download_frd=1. 

  

''' 

  

#code is largely the same as realtime predictions, differences are 
commented 

  

import cv2 

import numpy as np 

import dlib 

import pandas as pd 

  

cap = cv2.VideoCapture(0) 

  

detector = dlib.get_frontal_face_detector() 

predictor = 
dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") 

  

dataCount=0 

df = pd.DataFrame(columns=('noseX', 'noseY', 'direction')) 

direction = 2 

  

  

while True: 

    _, frame = cap.read() 

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 

  

    faces = detector(gray) 

    for face in faces: 

  

        x1 = face.left() 

        y1 = face.top() 

        x2 = face.right() 

        y2 = face.bottom() 

        #cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 3) 

  

        landmarks = predictor(gray, face) 

        x=[0] * 68 

        y=[0] * 68 

        for n in range(0, 68): 

            multiplier=170/(landmarks.part(16).x-landmarks.part(0).x) 

  

            x[n] = (int((landmarks.part(n).x - 

landmarks.part(0).x)*multiplier)) 

            y[n] = (int((landmarks.part(n).y - 
landmarks.part(19).y)*multiplier)) 

            cv2.circle(frame, (x[n], y[n]), 4, (255, 0, 0), -1) 

  

    cv2.imshow("Frame", frame) 

  

    key = cv2.waitKey(1) 

    if key == 27: 

        break 

  

    if key == ord('s'): #save the current datapoint in a dataframe 

        new_entry = {'noseX':x[33], 'noseY':y[33], 
'direction':direction} 

        df.loc[len(df)] = new_entry 

        print(df) 

        #export dataframe to CSV 

    if key == ord('e'): 

https://doi.org/10.1080/10508422.2012.679143
https://opencv.org/releases/
https://doi.org/10.1371/journal.pone.0254340
http://dlib.net/
https://canvas.tue.nl/files/3409965/download?download_frd=1
http://arxiv.org/abs/2101.09841


        
df.to_csv(r'C:\Users\20174718\Documents\ID\Year5\Q1\Embodyi
ng intelligent behavior in social context\test data.csv', index = 
False) 

        print("exported!") 

        #set which gaze direction is recorded 

    if key == ord('r'): 

        direction=1 

        print("direction set to right") 

    if key == ord('l'): 

        direction=3 

        print("direction set to left") 

    if key == ord('c'): 

        direction=2 

        print("direction set to center" ) 

  

cap.release() 

cv2.destroyAllWindows() 

 

A.2 Python code for real time predictions 

''' 

Code to predict gaze direction using machine learning. 

Written by Niek Rutten for the Embodying Intelligen Behavior in 
Social Contexts course 

2020 TU/e 

  

Based on: 

Canu, S. (2019). face-landmarks-detection-opencv-with-
python.[Python]. https://pysource.com/2019/03/12/face-
landmarks-detection-opencv-with-python/. 

and 

Tsiakas, K. (2021). supervised-learning-1b. [Python]. 

https://canvas.tue.nl/files/3409965/download?download_frd=1. 

  

''' 

  

import cv2 

import numpy as np 

import dlib 

import pandas as pd 

from oocsi import OOCSI 

  

from sklearn.ensemble import RandomForestClassifier 

  

  

cap = cv2.VideoCapture(0) #video feed from webcam 

  

detector = dlib.get_frontal_face_detector() 

predictor = 
dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") 

  

sessions = pd.read_csv('test data.csv'); #load in the training data 

  

# create training dataset - input and output -- create classes 

X = sessions[["noseX","noseY"]].to_numpy(); # position of the 
nose 

Y = sessions[["direction"]].to_numpy(); #looking direction 

  

#training the algorithm 

rf = RandomForestClassifier(n_estimators=150, criterion = 
'entropy') 

rf.fit(X, Y.ravel()) 

  

# variables for the text on screen 

font = cv2.FONT_HERSHEY_DUPLEX 

org = (200, 450) 

fontScale = 2.5 

color = (255, 0, 0) 

thickness = 5 

  

# connect to OOCSI running on the local machine ('localhost'), for 
connecting to processing 

oocsi = OOCSI() 

  

  

  

  

while True: #keep looping 

    _, frame = cap.read() 

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#turn 
the vidoe feed into grayscale 

  

    faces = detector(gray) #detect faces in the image 

    for face in faces:#loop trough all faces 

  

        landmarks = predictor(gray, face) #detect landmarks for the 
face 

        x=[0] * 68 #create variables for x and y to record landmark 
data 

        y=[0] * 68 

        for n in range(0, 68): 

            multiplier=170/(landmarks.part(16).x-
landmarks.part(0).x)#calculate the distance between left jaw and 
right jaw and calculate how much the face needs to be resized 

  



            x[n] = (int((landmarks.part(n).x - 
landmarks.part(0).x)*multiplier))#record x and y data of 
landmarks 

            y[n] = (int((landmarks.part(n).y - 
landmarks.part(19).y)*multiplier)) 

            cv2.circle(frame, (x[n], y[n]), 4, (255, 0, 0), -1) 

  

        X_test=np.array([x[33], y[33]])#create array with data that is 
used to predict gaze direction 

        rf_prediction = rf.predict(X_test.reshape(1,-1))#run 

prediction 

        if rf_prediction[0]==1: #put text on screen with the predicted 
direction and send data to processing 

                text='right'; 

                oocsi.send('colorChannel', {'direction': 1}) 

        if rf_prediction[0]==2: 

                text='center'; 

                oocsi.send('colorChannel', {'direction': 2}) 

        if rf_prediction[0]==3: 

                text='left'; 

                oocsi.send('colorChannel', {'direction': 3}) 

        cv2.putText(frame, text, org, font, 

                   fontScale, color, thickness, cv2.LINE_AA) 

        #print(rf_prediction) 

  

    cv2.imshow("Frame", frame) 

  

    key = cv2.waitKey(1)#quit program when esc is pressed 

    if key == 27: 

        break 

  

  

  

cap.release() 

cv2.destroyAllWindows() 

 

A.3 Python code for evaluation algorithm 

''' 

Code to evaluate the accuracy of a random forest classifier. 

Written by Niek Rutten for the Embodying Intelligen Behavior in 
Social Contexts course 

2020 TU/e 

  

Based on: 

Tsiakas, K. (2021). supervised-learning-1b. [Python]. 
https://canvas.tue.nl/files/3409965/download?download_frd=1. 

  

''' 

  

from sklearn.neural_network import MLPClassifier 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import confusion_matrix 

from sklearn.ensemble import RandomForestClassifier 

from sklearn import tree, metrics 

from sklearn.svm import SVC 

import pandas as pd; 

  

sessions = pd.read_csv('test data.csv'); #read the traning data 

  

# create training dataset - input and output 

X = sessions[["noseX","noseY"]].to_numpy(); 

Y = sessions[["direction"]].to_numpy(); 

  

# create training/test dataset 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, 
test_size=0.33, random_state=2); 

  

#train algorithm 

rf = RandomForestClassifier(n_estimators=150, criterion = 
'entropy') 

rf.fit(X_train, Y_train) 

#run algorithm for test dataset 

rf_prediction = rf.predict(X_test) 

#print the accuracy 

print("RF Accuracy:",metrics.accuracy_score(Y_test, 
rf_prediction)) 

print(confusion_matrix(Y_test, rf_prediction)); 

 

A.4 Processing code 

//https://github.com/iddi/oocsi-processing 

  

import nl.tue.id.oocsi.*; 

  

int color1 = 255; 

int color2 = 255; 

  

int increase = 2; 

  

String facingDirection = "right"; 

  

boolean suspicious = false; 

  

  

void setup() { 

  size(1000, 600); 



  background(#AACDDE); 

  textSize(20); 

  

  // connect to OOCSI server running on the same machine 
(localhost) 

  // with "receiverName" to be my channel others can send data to 

  // (for more information how to run an OOCSI server refer to: 
https://iddi.github.io/oocsi/) 

  OOCSI oocsi = new OOCSI(this, "EIBISC_GROUP2", 
"localhost"); 

  // connect to OOCSI server running at the adress 
oocsi.example.net: 

  //OOCSI oocsi = new OOCSI(this, "unique_name", 
"oocsi.example.net"); 

  

  // subscribe to channel "testchannel" 

  // either the channel name is used for looking for a handler 
method... 

  oocsi.subscribe("colorChannel");                                                 

  // ... or the handler method name can be given explicitly 

  // oocsi.subscribe("testchannel", "testchannel"); 

} 

  

void draw() { 

  background(#AACDDE); 

  //tafel links 

  fill(color1, color2, color2); 

  rect(150, 200, 300, 200, 28); 

  arc(300, 400, 170, 100, 0, PI, CHORD); 

  

  //tafel rechts 

  fill(color1); 

  rect(550, 200, 300, 200, 28); 

  arc(700, 400, 170, 100, 0, PI, CHORD); 

   

    if (mouseX > 150 && mouseX<450 && mouseY > 200 && 
mouseY <400 && suspicious==true) { 

    text("Student X is looking to their " + facingDirection + " a lot. 

You should check this student.", 162, 120); 

  } else {  

    text(" ", 40, 120); 

  } 

} 

  

void colorChannel(OOCSIEvent event) { 

  

   

  int direction = event.getInt("direction", 0); 

  if(direction==1){ 

    color2-=increase; 

    if(color2<0){color2=0;} 

    facingDirection="right"; 

    suspicious=true; 

  } 

  if(direction==3){ 

    color2-=increase; 

    if(color2<0){color2=0;} 

    suspicious=true; 

    facingDirection="left"; 

  } 

  if(direction==2){ 

    color2+=increase; 

    if(color2>255){color2=255;} 

    suspicious=false;   

  } 

  //println(direction); 

  //println(color2); 

} 

 

A.5 Link to video 

https://youtu.be/LoICO9QNcvY 

 

 

 

 

 

 


